
Basics of our Vulcan Magnetic Field Measurements

The megagauss magnetic fields generated in the intense laser-plasma interaction induce a birefrin-
gence in the plasma (discussed in detail later), resulting in a change in the state of polarization of
the initially linearly polarized incident probe pulse. For a normally incident probe, the change in
the state of polarization is manifested as a Faraday rotation ψ due to the axial component of the
magnetic field as well as the introduction of an ellipticity χ in accordance with the Cotton-Mouton
effect due to the azimuthal component of the magnetic field, as shown in Figure 1.

In general, a complete description of the state of polarization of an electromagnetic wave is given by
its Stokes’ vector [1], defined as

s ≡


s0
s1
s2
s3

 ≡ I0


1
cos 2χ cos 2ψ
cos 2χ sin 2ψ

sin 2χ

 .

It can be shown [2, 3] that the evolution equation (along the z direction) for the Stokes’ vector in
the magnetized plasma is given as1

ds(z)

dz
= Ω(z)× s(z),

where
|Ω| ≡ −ω

c
(µo − µx),

ω being the frequency of the incident laser pulse and µo and µx the refractive indices of the ordinary
O- and the extraordinary X-waves respectively.

The refractive index of the ordinary O-wave is given by the usual relation

µo ≡

√
1−

ω2
p

ω2
,

1Essentially, the state of polarization may also be represented by the Poincare sphere [1, 3], which is a sphere of unit
radius in the (s1, s2, s3) space, where a given state of polarization is uniquely represented by a point on the Poincare
sphere, with latitude 2χ and longitude 2ψ. The evolution of the Stokes’ vector is then represented on the Poincare
sphere by a rotation about an axis passing through the points representing the characteristic orthogonal polarization
vectors and is thus described by the aforesaid evolution equation.
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Figure 1: The polarization ellipse

where ωp is the plasma frequency. On the other hand, the refractive index µx of the extraordinary
X-wave however depends on the ambient megagauss magnetic field B via the cyclotron frequency
ωc = eB/m, e and m being the charge and the mass of an electron, according to the relation

µx ≡

√
1−

ω2
p

ω2

(
ω2 − ω2

p

ω2 − ω2
p − ω2

c

)
.

The different refractive indices lead to the accumulation of different phases by the two characteristic
waves as the probe traverses across the plasma, which results in the induced ellipticity. Essentially,
the cut-off for the O-wave is at ω = ωp, and hence it reflects from the usual critical density surface.
However, the externally incident X-wave is reflected from the so-called right-hand cutoff [4] at

ωR =
1

2

(
ωc +

√
ω2
c + 4ω2

p

)
.

Thus, for a given incident laser frequency ω, the X-wave reflects from a density lower than the
critical surface density, from which the O-wave reflects, the difference between the two depending
on the magnetic field B. Obviously, the density profile decides the difference in the turning points
and therefore, what is required for the estimation of the magnetic field from the measured ellipticity
is the scale length of the plasma (at the rearside, for our measurements). Essentially, the plasma
density profile is modelled by assuming that the plasma expands into vacuum at the ion sound speed
cs in a self-similar fashion [5]. This yields the exponential density profile, where the scale length is
given as L = cst, where t is the time and the expansion velocity cs is given by the expression

cs ≡
√
ZkBT

mi
,

T being the bulk plasma temperature, Z the degree of ionization and mi the mass of the ion. For
example, Gremillet et al. [6] and Malka et al. [7] specify the bulk plasma temperature of common
targets (such as 100 µm thick fused silica and 50 µm thick aluminium foil) as typically of the order
of a few eVs at the target rear at laser intensities of 1018 − 1019 W/cm2.
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In summary, the measurement of the Stokes’ parameters of the reflected probe, on comparison with
the incident probe, yields the ellipticity and the Faraday rotation (negligibly small in our case)
induced in the probe due to the presence of the magnetic fields in the region of the plasma through
which the probe has traversed. The code which deduces the magnetic field from the ellipticity
essentially solves the above evolution equation numerically and iteratively to evaluate the magnetic
field required to generate the ellipticity observed in the experiment. The entire plasma box is divided
into several cells, where the output Stokes’ vector of one cell is fed as the input Stokes’ vector of
the next cell and hence the evolution of the Stokes’ vector is monitored over the entire length of the
plasma traversed by the probe.
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